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FOREWORD

This work was conducted in order to develop a capability to predict aerodynamic loading for supersonic
Mach numbers on nonaxisymmetric flight vehicles using rapid/accurate computational models. The result-

ing computer program, which will be described in a later report, allows one to predict static aerodynamics in
the preliminary and intermediate design stage.
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INTRODUCTION

The need to investigate a large number of free-stream and geometric combinations for preliminary
design studies requires rapid/accurate computational models. Itis assumed that the flow field computation

can be separated into inviscid, boundary layer, crossflow separation, and separated base region comput-
ations.

The bulk of the theoretical effort was devoted to developing an inviscid computational model for
configurations with nonaxisymmetric bodies that would be valid at low angle of attack. The objective was to
develop a code for the {ree-stream Mach number range of 1.2 < My < 3.0 with an accuracy approaching that
of the nonlinear Euler or potential models, but whijch requires significantly shorter run times.

Linear surface singularity methods 1.2 have been highly developed for complex configurations,
including high angle-of-attack vortex modelling. Set up and run times are fairly long. Nonlinear
compressibility is not well modelled.

For axisymmetric bodies at low angle of attack, component-buildup methods can be utilized for a
restricted range of configurations and free-stream conditions that are applicable to many current designs.3.4

For nonaxisymmetric bodies with inlets and more general free-stream conditions, the component buildup
approach is less applicable.

The Van Dyke second-order potential method 5 was adapted for the body-alone inviscid prediction
described in References 3 and 4. The method only requires the evaluation of axial source-sink and doublet
distributions that are evaluated as the solution is marched down the body. Extension of the model to
nonaxisymmetric bodies requires evaluation of the first-order solution in the flow field. The axisymmetric
body solution at angle of attack is not a full second-order solution,

The second-order Van Dyke model has been extensively developed for nonaxisymmetric bodies with
planar discontinuities including inlets. 6-8 In this report, extensions to bodies with blunted noses and lifting
surfaces are given. The numerical techniques are finite-difference implicit and explicit marching. The
current method tracks the origin of disturbances or nose Mach cone. This limits the small disturbance
solution to bodies that lie within the Mach cone. The work described here and in References 6-8 required
original research that did not exist in the current literature.

At higher Mach numbers, local pressure solution methods 9 are utilized (generally for Mach numbers

greater than 3.0). However, for better accuracy, an Euler solution such as given by the SWINT code 10.11 ig
recommended.

The effects of viscosity (e.g., surface skin friction, crossflow separation at high angles of attack, and
base wake flow) are treated by rapid, very approximate methods.
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2.0 GEOMETRY, FREE-STREAM VELOCITY, AND
FORCE CONVENTIONS

2.1 BODY GECMETRY

' The body is assumed to have a vertical plane of symmetry. For the linearized computations, the body
(including fins) must lie within the Mach cone of disturbances. For a blunted body, the origin of the Mach
cone begins upstream of the nose. However, body geometry is always referred to the nose.

A half-plane for a general body is depicted in Figure 1. Body geometry is given in cylindrical
coordinates and the body radius, ry, must be single valued in the azimuth angle, 8. For the blunted body
shown, the choice of origin of coordinates 0’ will be discussed in Section 3.7. The body is assumed to be
continuous between planar discontinuities. However, ry, is assumed to be continuous in 8.

An initial blunted section, O to the plane OO, must be circular in cross section. The ry, variation with x
need not be that of a circular arc. Typical planar discontinuities are shown for 00, AA, and BB: OO may
have a slope discontinuity or a radius of curvature discontinuity; AA depicts a radius or planar inlet
discontinuity; and BB depicts a slope discontinuity.

The body is divided into sections equal to the number of planar discontinuities plus one. The body is
assumed to be piecewise continuous to second order in x derivatives between planes of discontinuity. No limit
to the number of sections is assumed. Any section, except the first, may have a set of fins (up to six fins per
set). Each section may be similar or nonsimilar. Similarity implies a basic cross-sectional outline that is
scaled. An axisymmetric body is similar throughout.

Each cross section is quarter- or half-plane symmetric and dr,/30 is assumed to be zero at the ends of
the symmetry intervals.

Body geometry is input analytically by code source updates or numerically as planes of ry, vs 6 point
sets. Each section may have a different mode of body geometry description.

For similar sections, only one reference x plane of ry, r,/d0, and 92r,,/302 need be evaluated for the
quarter- or half-plane. For the remaining x locations, ry, dry/dx, and a2ry/dx2 are required only at the initial
computational 8 plane. For the numerical mode of input, ry, dry/dx, 82r,/dx2 are computed using a four-point

Lagrange polynominal fit; ary/80, 32r/362, and d2r},/3xd0 are computed numerically using third-order splir2
fits.

2.2 FIN GEOMETRY

The fins are treated as thin fins in a manner very close to that described in Reference 10. The fins are
assumed to be symmetric about a midplane that lieson a constant 8 plane. Figure 2 depicts the sectional

view, CC, from Figure 1. Also depicted is an intermediate computational plane and an expanded view of the
fin cross section.

Again, symmetry is built into the code. The fin configuration is input as quarter- or half-plane
symmetric. Thus, if the body has quarter-plane symmetry and the fin set has half-plane symmetry, the body
information is for 0 <8 <rn/2 and the fin information is for two fins as shown in Figure 2.
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As indicated in Section 2.1, up to six fins per (ull-plane are allowed. For fin quarter-plane symmetry,

only one or two fins are allowed in the interval 0 <0< /2. Two fins are allowed if one of the fins lies on either
0=00r 0=r/2 planes.

For fin half-plane symmetry, one to four fins are allowed in the interval 0 <0 <m; four fins are allowed

if two of the fins lie on 6=0 and 0 = planes. None of the fins for fin quarter- or half-plane symmetry need to
be identical.

The indices i, j, and k refer to a computational grid that is not shown in detail in Figure 2 and will be
discussed later in this document. £ is a shearing transformation

r—-r

b (2-1)
E.::
x/p - T

that maps the region between the body and the Mach cone to a rectangular region.

The thin-fin assumption implies that the fin surface lies close to the fin midplane. For computational
purposes, the fin is assumed to have sharp edges. Fin boundary conditions are evaluated at the midplane.
Thus, points A and B coalesce to two computational points on either side of the midplane. The fin plane is

located by the index j=JFIN. The 8¢values are obtained from the body input array; 8y,89,..8()..,0n =
B8(JM); to be discussed later.

From the geometry of Figure 2,
=00, (JFIN) -0 (2-2)

i (2-3)
o =tan" " (Ur),

where g, 0, and ¢ are assumed to be small.

All moveable control deflections are treated only as streamwise slopes. For a fin deflection, in reality,
leading and trailing edges are displaced out of the original fin plane. The location of the deflected fin hinge

line is not an input. Individual fin deflections are input. A positive deflection occurs when the trailing edge
of the fin lies clockwise from the fin plane.

A consideration of free-stream conditions, fin symmetry, fin deflections, and body symmetry

determines the values of 8y and 8,4 and whether the computation is quarter-, half-, or full-plane. This will
be discussed later.

Figure 3 depicts the geometry used to describe a single-fin planform. XMI is the minimum value of x
for the fin. XMA is the maximum x distance of the fin from the origin. RMI is the minimum radial distance
from the x axis. s+ RMI locates the general radial distance of a fin point. SMA +RMI is the maximum radial

extent of the fin, All the values in this paragraph are input numerically. With this type of input, the same
fin may be positioned any place on the hody.

The planform outline, its inclinations, and the fin thickness derivatives are given as analytic functions
of s and x. The planform outline is given as inner, SI, and outer, SO, values of s. Currently, the fin surface is
assumed to be a continuous surface for most applications. For the high Mach number range, discontinuous
fin slopes may be input as is. For the potential flow computation, discontinuous slopes are scaled down; fin
axial force is then scaled back up. The scaling is also needed for thick continuous surfaces.
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Also shown in Figure 3 are the traces of constant £ values on the fin. For the high Mach number
regime, these traces are based on a pseudo Mach cone that lies outside all fins in the section. The edge where

af _tr_nce enters the fin is a leading edge. The edge where a £ trace leaves the finisa trailing edge. If the
trailing edge is subsonic, it is a side edge.

2.3 FREE-STREAM VELOCITY VECTOR

The Cartesian components of the free-stream dimensionless velocity vector are given by
q, = cosacosB'i' + sinB'j + sinacosp'k’ (2-4)

2.4 FORCE CONVENTION

The axial force, F'5, acts in the x direction; the normal force, Fy, acts in the z direction; and the side
force, Fy, acts in the negative y direction. The roll moment, Mg, acts in the negative x direction; the yawing
moment, M, acts in the negative z direction; and the pitching moment, My, acts in the negative y direction.

2.5 SYMMETRY CONSIDERATIONS AND NONZERO FORCE COEFFICIENTS

As earlier indicated in Section 2.2, the range of 8 and the nonzero force coefficients are determined by
the free-stream velocity vector, body geometry symmetry, fin symmetry, and fin deflection. Inthe coding, the
individual force and moments are labled 1 through 6 for axial force, normal force, pitching moment, side
force, yawing moment, and roll moment, respectively. There are four possible combinations or modes, LM, of
0 range and active force coefficients. The LM value may change from body section to body section and is
associated with the highest value of force label. LM is an input variable. LM =1 is for quarter-plane
symmetry for body and fin,a = 0, B’ = 0, and mirror image fin dc{lections about 8= /2. Only the axial force
is nonzero. LM =3 is for vertical half-plane symmetry. It is obtained by various combinations where §’ is
always zero. Active force labels are 1 through 3. LM =5 is the upper half-plane symmetry associated with
any combination of yaw deflection and/or side slip and body quarter-plane symmetry. Active force labels are
1,4,and5 LM = 6 is for the full range of 0 and forces. Configuration symmetry may vary from section to
section. L M = LML, where LML is the previous section value of LM, is required oy the hyperbolic character

of the flow. Thus, LM may varyfrom1t03,1t05,1t06,1to3to6,1to5to6,or5to6inthedownstream
direction.

3.0 THEORETICAL DEVELOPMENT FOR THE FIRST- AND
SECOND-ORDER POTENTIAL SOLVERS

3.1 FIRST- AND SECOND-ORDER POTENTIAL EQUATIONS

The full nonlinear dime.asionless potential equation is given by

M2

-1 - (3-1)
1+YTM§(1_Q2) v Q="Q V@)

A small disturbance from the free-stream dimensionless velocity vector is given by
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Q=qw+q=(cosaoos[3'+u)i'+qmc+qc (3-2)

where @ is the total velocity vector, q is the disturbance velocity, q_ is the free-stream velocity, and q_ and q
are crossflow components of q_ and q, respectively. - )

Substituting Equation (3-2) into (3-1) and neglecting higher-order terms, one obtains the well-known
first-order wave equation

du
2 1 (3-3)
V.- qlc—ﬂ = =0

4

V. is the crossflow gradient operator. The subscript | indicates first order. Equation (3-3) is supplemented by
the two crossflow irrotationality equations.

An improved solution to the first-order problem is obtained by evaluating the neglected nonlinear
terms using the first-order solution and solving the nonhomogeneous wave equation for a second-order
iterative solution. Second-order equations are

du M2
vc' 99 — B -8: - Mon P + vc' Qc - B2 9 9. vc. 9
_ (3-6)
(Vqu)c =0

2
_ 2 Y .2 2
A—ul(v}ql—-—6 M ui-1

Y—.

1
+ cosacosf’ [qf + —-'Mi uf+ a; qm] 3-7

_ 2 2 .
Q¢: - *ql qlc + (ql + ql qm)qmc

MEGy-1) [ ¢}, (3-8)
+ N 7 T ¥ 95 X (@) X 00
The subscript 2 refers to the second order. The first- and second-order equations are in nearly
conservative general vector form. Only the last term on the right hand side of Equation (3-5) is in non-
conservative form.
The boundary condition on all surfaces is
Q. n= 0 (3‘9)
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where n is the outward normal.

Any set of coordinates may be used for the crossflow plane. An ideal set of body fitted orthogonal
coordinates would transform the region between the body, including fins and the bounding Mach cone, to a
rectangular computational region. This would require a numerical solution of Laplace’s equation. This
would lead to a simplified boundary condition evaluation. However, the disturbance envelope Mach cone is
circular and, hence, the choice of cylindrical coordinates eliminates the grid generation problem. However,
the range of configurations is limited unless one introduces the complex multizone approach of Reference 12.

3.2 COMPUTATIONAL COORDINATES AND GRIDS

The shearing transformation has been introduced in Equation (2-1). The basic variables §{ and 8 are
further clustered independently for unequally spaced grids.

The 8 grid may be uniform or nonuniform; 6 points are clustered near points of greatest curvature of
the body. It is assumed that the nonuniform grid 8 is mapped to the uniform unspecified grid ¢. Fora
uniform grid, only the maximum 8, 8, compatible with the body symmetry is input and divided equally
according to a maximum input,j = JM. For a nonuniform grid, the individual 8 computational points are

input. Transformed first and second derivatives are evaluated by applying central or one-sided differences in
¢. Combinations that are needed are

1 C

_ _ (3-10)
PO ()= = d0p( )~ —
dd dd
—_— — .___1.___ {i (.fg. / ie_ &
0T (de >2 w a w @-11)
do
-t [c c ‘-1-2—9—(A¢)2/(£ A¢)]
(-@-Aq))z 2 ld¢2 do
do

The quantities d8/dd Ad and d26/ddp2 (Ad)? are evaluated by central or one-sided difference approximations of
O [(Ad)4) accuracy. Cq and C; are related to the finite-difference approximations.

The § grid may be uniform as determined by the input KM value or nonuniform; & = §(1) = 0. The
nonuniform grid may vary as a geometric progression in which § 2 = £(2) = DO or may be input

individually. £ clustering is necessary far downstream on long bodies or for small span fins. The geometric
progression clustering grid is given as

=k, DO(1-a*h )
S ook —————k=2,3,.., KM+1 3-12)
L=0 l—a

aisdeterminedat k= KM+ 1 {rom
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| = DO (1 - KM

l—-a

(3-13)

a is determined by Newton-Raphson iteration; a=1. Once a is determined, Equation (3-12) evaluates the
geometric progression distribution. A transformation from £ to an unspecified uniform g grid is appliedin a
manner similar to that for the 0 gridding. First- and second-order derivatives similar to that in Equations
(3-10) and (3-11) need to be evaluated. Central and one-sided difference approximations of 0 [(V{)4] are used.

3.3 VELOCITY ADVANCEMENT EQUATIONS IN §,6 COORDINATES

The first- and second-order equations may be recast into an almost conservation form using { and 8
coordinates.

The first-order equations are

Aok {x [R(—BzExul +v) + ETle + 3/8 [x(l/B—-Rb)wl]

(3-14)
+a/ax[.-p?x"’ze(l/p—Rb)u1 =0
dox |x(1/B — R v, +6/a£[—u1+Exvl] =0 (3-15)
2
&ox | x R(I/B—R)wl+a/a§{x[RE w,-E_ u ]
b 1 x 1 T1 (3-16)

— &0 [x(l/B —Rb)u1 =0

Here, R = r/x, Rp = rp/x, and

aRb
E=-—R+-—-—1-]
x [ JCc’):vc( 9

uy, vi, and wy are cylindrical coordinate velocities.
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The second-order equations are of similar form.

¥ [-p"xzmup-zeb)u?e

+ /90 [x(l/B-—Rb)wze]

+ ¥ {x [R(—BZExuh +v,) + ETwZeH

= —-q, {a/af. ‘x(R v, + ETwl)] + 3/38 [x(l/B—Rb)wl”
a/dx [x(l/B-Rb) 02] + a/aF,[Ex v, = u2] =0

¥ax {sz (1/p~R) w2] + o [x lREx wy—E_u,

|

— /08 [x(l/B—Rb)u2] =0

4
= 'I"I—m(vz+w2)22——.'\'{'2

N 1 1
B’ 2

®
uZe—u2+ 2A
B
_ 2
uh—vz—Mmqr
w, =w, — M>
2~ Yo =g

A is given by Tquation (3-7) with

q,, = cosacosB’'i'+ (sin acosP’cosB + sin B’ sin0) )’

— o + (sin B’ cos® — sinacosP'sinB) k'

=y '+v j+w k'
[+ o =}

i',j’, k' are unit vectors for the cylindrical coordinate system.

i o, GTOMo o
q,=v, -2— +v (q. ql+q1)+ T [—2- (vl— w1)+ wmulwI]
2
w,q, - -1

- . 2 Y 2 o2 2
qe‘ 2 +ww(qm ql+q1)+ Bz Mm[— 9 (vl—wl)+vmvlwll

3-17)

(3-18)

(3-19)

(3-20)

(3-21)

(3-22)

(3-23)
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The.equations in this section will be utilized to advance the field velocities by an explicit marching scheme to
be discussed later.

3.4 IMPLICIT MARCHING SOLUTION

L An implicit marching solution is used for continuous pointed hodies with no lifting surfaces and for the
initial section of pointed bodies. The velocity vectors q,, q, are replaced by the gradient of a potential

-2
q, =V, €=12 (3-24)

A similar conical potential function is introduced as

$,=2F, (%50) (3-29)
The full first- or second-order boundary condition is given as
ar

b
Vc='5;

1 9R i
U+ — —W (3-26)
R, 8 ¢
b
U, V, W are total cylindrical coordinate velocities.

Equations (3-14) and (3-17) may be written in nonconservative form after substitution of Equations
(3-24) and (3-25) as

C,(Fep), + Cy(F ), + CuFQ, + C (Fy o, + Cix(Fy ), + 2Cx(F),

9 (3-27)
+ Cox“(F_), = (RHS) €=1,2
xx'€ 4
(RHS), = 0.0
The boundary conditions may be written as
_ (3-28)
(Fy), =B, + ByF, + B, (F, + Byx(F ),

Equations (3-27) and (3-28) could be written in ¢, { variables as well.
At the Mach cone, the conical potential functions are known to be singular and assumed to behave as
F.=1-9"|8, +8,,E-¢,) (3-29)
i 11 12 KM

(3-30)
= 2

Second-order accurate difference schemes are the goal. For k=2, KM-1, central difference
approximations are utilized for all { derivatives. Central differences are utilized for all ¢ derivatives as well.
At symmetry planes, Fg and Fgg are set to zero. Atk=KM, § derivatives are obtained by differentiating
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Eiu!:;i;):: ;3l;2=9l)(%\filf3-30). S11, Sy2, S21, and Syg are computed by evaluating Equations (3-29) and (3-30) at

Or‘lly one previous plane of data is needed in evaluating the x derivatives. From a Taylor's series
expansion about a known plane of data,

(F ), (&) (3-31)

xx’ €, i

Fo=Fpi+ F, bx' +
It is assumed that Fy, is constant for the interval Ax. Here, Ax' = x —x;.

2(Fx)t. i

=(F - — (3-32)
Fodein1=WF e = (Ax)? Fe,i+l—FC,i]_ Ax
Differentiating Equation (3-31) and substituting Equation (3-32) yields
(F) =Ry, + = |F,  _F (3-33)
i+l i Ax | bi+l e,

(Fg)e and Fp are stored at i, x;. The solution isdesired ati+1, x;+ Ax. These x derivatives then may be
substituted into Equations (3-27) and (3-28). At the initial plane, (Fy)¢, 1 and (Fyy)e, 1 are set to zero. At x=0,
the flow is conically similar. The advantage of an implicit scheme is that the initial plane of data is
established immediately and large steps, Ax, may be taken.

Atk =1, the potential equations are evaluated with the aid of the boundary equations. Fg is obtained
by differentiating Equation (3-28) with respect to x. Initially, F¢g was evaluated by differentiating Equation
(3-28) with respect to 8. A more stable approximation proved to be

1
Fegy ;= _(Tie_—__ IFZ‘J,H —Fy 1 =F it FLj—l] (3-34)
2 :i-c_);)l'-’
Fg¢gis evaluted as
F) = 2% [F F. —(F) I (3-35)
1 WA (A D2 2,5 TLiT VR

The resultant finite-difference scheme leads to a block tridiagenal matrix equation for (F) ;41 and
(F2) {+1. Eachblock is tridiagonal for quarter- or half-plane symmetry. For a full 360-deg solution,
additional wrap-around terms are present for each block. Solution of the matrix equations is obtained by
lower-upper decomposition involving the block matrices (see Reference 7 for details). Velocities are obtained
from the definition of the potential and conical potential function combined with boundary condition and
finite-difference approximations (see Reference 6 for details of the velocity relationships). Velocities are
evaluated only at the boundary except where a transition from an implicit solver to the explicit solver is
required.

10
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3.3 PLANAR BODY DISCONTINUITY JUMP CONDITIONS

At the discontinuity, locally two-dimensional jump relations are sought that are compatible with the
first- and second-order differential equations. Since the discontinuity is planar, disturbances are propagated
into the flow along a surface that is the envelope of the Mach cones emanating from the surface cut curve just
downstream of the discontinuity.

Figure 4 depicts a cylindrical coordinate system and the s, n coordinate system associated with the
discontinuity cut curve; s is along the curve and n is normal to it. The wave front grows in the n direction.
Jumps occur across the normal to the wave front. Velocity components tangential to the wave surface are
conserved. The discontinuity surface is not tracked into the flow.

First-order equations in s, n, x coordinates are given as

1 W ou
L don jv (1 +xn)] [52 L 0
1+xn ds 1+xn nl1 ax
P Mo
ox an
Ju
1 -
dox | (1 +kn)v l -~ — =0 (3-36)
sl 3s

Here, x, is the cut curve curvature. vn; and vgy are normal and arc velocity components. Jump relations are
established by an application of Gauss’s theorem for the s, n, x system on either side of the as yet
undetermined discontinuity surface. This approach is known as the method of “weak solutions”13. Applying
the method of “weak solutions” to the set of Equation (3-36) yields

2 (3-37)
Avsles + Au’ll en—B Au1 e = 0
Av e —Au,e =0 (3-38
nl x 1 n
Av.e —Au,e =0 (3-39.
st x {7s
en, €3, €; are components of the surface normal. Since Avg;=0,¢, = 0.
From Equations (3-37) and (3-38),
- (3-40
ele = =
n x
(3-41

Av_ + BAu, =0

Here,A( ) = ( )after-( )before = ( )a-( )b. Equation (3-40) is the well-known result that the
discontinuity surface coincides with the characteristic surface for linear sets of equations,

From the geometry of Figure 4 and Av,; = 0, one obtains,

11
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Av, = Aw, cos®' + Av,sin®’ = 0 (3-42)
Av, =Avfcos® (3-43)
The boundary condition on the downstream surface is

ar

Vlb+Avl=—b (1-B)u +BU,,+Au)l +tand’'W,, + Aw)) (3-44)
& ® b 1 15 1
where

an® = L b (3-45)

Equations (3-41) through (3-45) lead to a solution for Auy, Avy, Aw;. The factor B allows for application
of the modified, B=0, or full, B=1, boundary conditions. Van Dyke 14 showed that B=1 is best for surfaces
with positive inclination jumps in slope and B =0 is best for surfaces inclined at large negative angles.

Applying the same approach to the second-order equation leads to

2 24 ' (3-46)
Av e — B Buje = Au'e +Av e
= (3-47)
Aun2eJlr - A u e, = 0
— (3-48)
A Vo= 0
2
Y., (3-49)
Au' = —~ AA
B
! 2
U’l _ -q_l ( 2 + ) )
Mm2 =Un 2 tvLla,ta, q,
2 2
Y nt ' (3-50)
+ F (Y_l) —2- vnm + vsl Usmvnl
4 3
M, @—y) [Y o
=2 T2 |3 tUlm
B
Here, A vg; = 0 has been used in deriving Equation (3-50). Also,
Vo = UmcosB' - wmsine' (3-51)
Vg = W, 050" + v_sin6’ (3-52)

Equations (3-46) and (3-47) combined may be written as

12
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(Bv_, + B du,)

n x Au

2
B2Au + AV ele) (3-54
Av ot BAu, = = )

n 2 ele =
n x
Ifeq/ey is set equal to the first-order value of -B in Equation (3-54), one obtains

Aw BY, (3-55)

Av o+ BAu, = _B—Z— + Y
Equation (3-55) leads to a set of linear relations for Aug, Avg, and Awsg and is compatible with Van Dyke’sS

jump relations for the second-order axisymmetric case. An alternate approach is to combine Equations (3-53)
and (3-54), which leads to a quadratic relationship

2 ' 2
Aun2 - Avn2 Av' ~ B

(Au2)2 + Auy Ay’

=0 (3-56)

Equations (3-55) or (3-56) combined with Avge =0, Av,e = Avylcos 0', and the second-order downstream
boundary condition lead to a solution for Aug, Avs, and Aws. The second-order boundary condition is given by

ar
b
V2b+ A02= ; [(I—B) U1a+ B(U2b+ Auz)

' . (3-57)
+ tan@ (W% -+ Aw2)

Choice of sign for the nonlinear quadratic solution depends on whether the local turning angle is compressive
or expansive.

The turning angle in the n, x plane for the second-order case is
V2b cos B’ — W2b sin 8’
U

ar
]
( — )a cos @'’
ox %

Note that the only difference in applying the jump relations for surface slope discontinuities and inlets
is that the upstream velocity vector at the inlet lip must first be determined by interpolation in the upstream
velocity field. To continue marching downstream of the inlet, the entire velocity field between the lip and the
Mach cone from the origin must be determined by interpolation.

DTH = tan ™! —tan=! (3-57a)

Numerical solution without special damping or tracking of flow discontinuities becomes difficult

downstream of a discontinuity. An explicit MacCormack marching scheme was developed in the hope that
the internal propagation of discontinuities would be captured.

13
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3.6 EXPLICIT MARCHING SOLUTION OVER CONTINUOUS BODY SECTIONS

Equations (3-14) through (3-19) may be used to advance the field velocities. Characteristic-
compatibility relations will be combined here with the boundary conditiont5 to advance the boundary

velocity components.

The basic equations for combined first- and second-order may be written as

1 1 (3-58)
u + uaﬁx— ESE lUE£r+ - waﬁe] =R,
(3-59)
ux+uaﬁx—u££r=0
) (3-60)
lux+w{£x—:u£§0=ue/r
M2
R_v+18w __fta_/l+£§_4‘_\_
uT g2 28 pgZlar &
1 Lano+ Lo
+ - (rg)+ - ¥30+ ) 3&] g, (3-61)

WL e e ( {la/ae+l a/aal }
+‘B—2— :&r aarvl)+ - r£9 w,

Here, &, £, and &g are transformation partial derivatives.

Characteristic eigenvalues and eigenvectors are sough' for the §, x plane with 8 as an interior variable.

The set of Equations (3-58) through (3-60) are of the form

P +RP, =RH (3-62)
x §
The eigenvalues and eigenvectors are given by
L [R-Aill =0 =12 (3-63)
B 7
S
YR T
(3-64)
R=1 -¢ & 0
1
Fe 0 s

14
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Solving for the eigenvalues from Equation (3-63),

1 2 1 2 172
)\l—ﬁx—a(ﬁr+—2£0> ,4\2=£, (3-65)

r
The choice of sign for ), is associated with the incoming characteristic that is of interest. Corresponding left
eigenvectors are

1 12

2 e\
I_Brl£'+(r£0>‘ rE

L=

‘ & 2" g

L

1 _ (3-66)
L3 =1

2 _ .~ r2_ ~& 2 _ (3-67)
Ll—O,L2— < ,L3—1

r

Multiplying Equation (3-62) by the left eigenvectors and utilizing Equation (3-63), one obtains two
compatibility equations.

. . . (3-68)
L'P +\L'P.=L'RH
x i £
The second compatibility advancement equation of (3-68) may be simplified by utilizing the third
unused irrotationality component.
av
— = d/3r (wr) (3-69)
G ¢]

This eliminates the r or { dependence. For computational applications, Equatibn (3-68) is evaluated at
the surface.

The first-order compatibility equations are of the form

aE,. oG,. &H. .
1i 1 1 ) (3-70)
+ + =C,. i=12
ax ot 90 it

g o P (3-71)

1 c0s 0’
— — ' (3-72)

Elz =0 U0 = xRb/cosB

ar

- ~( =t (3-73)
Gy = “’2311"’2‘( = °3> €a

1 1 (3-74)

= —_—— = ——G.=0
% B cosO' “ x(l/B—Rb) 12

156
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-— ' o cm—
H“—(tanB u —c wl)cs,c =

3 5 xRb
or
b
Hpy=~-u - o 1
tan@’ .
Clz“o’cll‘C6(°7"1—w1)+cs(°8”1+6301_69w1)’ Ce= T,c7=psm9 ,
dtan 6’ ( ,>2 sin @’ (atane' atan9'>
= —~{tan0' ) ,c,= -
8 20 9 B 00 0’

Here, 0, vgi, and v, have been defined earlier in connection with the jump conditions.

The second-order compatibility equations are

E,. oG, aH

2 2 2 aS aT
+ + =C, +qy(— + —)i=1,2
ox of 30 2i qN(ag w)
E = v+ By,
21 cos 0’
Ep=c vy
G, = —c,E, M2<Air—b R o' = G, =0.0
1= "% GoMe\ G T Rb+t‘"‘ ) €10~ B9 Y2 ™ "
E21 = (vn2 + [3u2)/r:os(9',H21 = (tan®’ Uy — ¢, wze)
or
b
Hp= —uy— U2

S= R '
=¢y R_bv‘ - tan® w,

T= CyCs W,

C22=0,Cm=c (c,u ——wy) +e

6{Crlo, s |Calig + €Uy — €Wy, + gy w))

Equations (3-14) through (3-19) are already in a form similar to Equations (3-70) and (3-78).

Finite-difference schemes will be developed after the fin boundary scheme is developed.

16
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(3-84)

(3-85)
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3.7 BLUNT BODY SOLUTION

As Farlier indicated in the geometry description, a blunt body is assumed to have an initial circular
cross section; however, the meridian curve need not be a circular arc segment. At the nose of the body, the

slope angle is 90 deg and is larger than the Mach cone angle. Sharp nose bodies with initial angles greater
than the Mach angle are not considered.

The basic idea is to start the surface pressure distribution as a modified Newtonian one and continue
the computation by some approximate model. This approach was first utilized in Reference 16 for relatively

large supersonic Mach numbers. The second-order shock expansion method!7 was utilized to continue the
computation.

Two different methods of matching a Van Dyke second-order axisymmetric solution with a Newtonian
pressure distribution are described in References 3, 18, and 19. Both of these methods use surface boundary
conditions, axial source, sinks, and doublets.

The first thing to establish is the effective origin of disturbances and a match point between a modified
Newtonian pressure distribution and a continuing potential solution. In Figure 5, a meridian plane and the
choice of match point and origin is shown. A match point at x=x, is chosen so that

ar

tans ={-—"> = a/B, a<0.95 (3-87)
m =\ g m

where a<0.95 is an input. x,, is determined by Newton-Raphson iteration.

A tangent from m is drawn to OT. A Mach line isdrawn from m to OU. The effective originisat 0',
X=x, =0.0.

) Y
x =x —r(x )| — +cB]
[4] m b m arb (3‘88)
— ()
ox M

where cis an input. Various combinations of a and ¢ have been tried. a=0.8, ¢ =0 seems to be about
optimum.

Various approaches were tried for a model blunted cone problem. None of them were fully successful.

The modified Newtonian pressure coefficient distribution is given by

p—-p,

— — . 2 (3-89)
Cp = 5 = C sin Se
YIZM
sin 82 =q,; n;,
= cosa,, sin Sm - sin Q. cos B6-v)cos Sm (3-90)

nj, is the inward normal to the body. Cp, is the stagnation pressure coefficient. a_is the total angle of attack,
and v is the roll angle of the crossflow free-stream velocity component.

17
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The first- and second-order potential functions are given by

&, =/,0e,n) + f, (x, N cos(@—v)sina, (3-91)

b, = X, (e, ) + f, (x,r)cos (0 — v ) sin a, (3-92)
This is the "hybrid” approximation of References 5 and 19.

The potential Bernoull: pressure coefficient is given by

-1 yiy-1
1+ = m20-0d -1
C = 2 (3-93)
g v2M?

Equation (3-92) may be substituted into Equation (3-93) and Equation (3-90) into Equation (3-89) and
matched to 0 (sin3at) as in Reference 19. Matching coefficients yields xox, Xors f1, f1x, and f1, at the surface.

It is then assumed that the ratio of first- to second-order surface velocities at zero angle of attack is the
same as the conical solution ratio. This yields an approximation for f,¢ and £, at the surface.

The remainder of the initial plane of data is obtained by utilizing the homogeneous conical potential
functions for {yy, for, f14, f1r, and fi.

In summary, an approximate initial plane of velocity data is obtained that matches the modified
Newtonian pressure distribution. The solution is then marched downstream by an explicit routine. Implicit
routines lead to strongly oscillating flow prediction.

The blunt body option should only be used for significantly blunted bodies that have large wave drags,
since the CFL step size (to be treated later) is very small for almost pointed bodies.

3.8 FIN EDGE TREATMENT AND SURFACE DISCONTINUITIES

The first objective is to obtain jump conditions for supersonic leading and trailing edges. For a fin
leading edge, the velocity ahead of the edge is known and the velocity on both edge sides is to be determined.

For a variable sweep leading edge, the envelope of disturbances or wavefront from the edge is rotated with
respect to the local 8 plane of the lifting surface.

Conservation relations for the first-order wave equation may again be derived by the method of "weak
solutions”.

(3-94)
(Aw))® + (Av)? ~ B*Au )’ = 0

Here, the conservation jump relations for the three marching equations have been combined.
At k=1, the remaining relationships are determined by satisfying both the body and fin boundary

conditions where the fin meets the body or the beginning of the corner. Atk=1, the conservation of the
. tangential velocity component and the fin boundary condition provides the needed two relations for closure.

At the fin surface (from Figure 2),

18
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w=0-0 -0=0 (3-95)

Equation (3-95) may be used to determine the fin surface normal. The fin full boundary cohdition may
be written as

Wi =ro U +ro V (3-96)
. x 1 r 1

¢
x

ro = ri/ax 1tan'1(t/r)

* 1+@Wn?
=t =tand_t¢
x f ox
t ~tr
ro = ——— =t —dr 3-97
14(t/r)

Here 8¢is the fin control deflection, t,y is the fin slope; (+) for 8> 68¢and (—) for 0 <0¢sides of the fin.

The fin boundary condition is further approximated by neglecting the spanwise contribution.

(3-98)
Wlb +Aw, = t l(l ~Fu_+ F(U1b+Aul)

In almost all applications, F =0 or the approximate fin boundary condition yields a result superior to that for
F=1.

For k =1, the tangential velocity may be written as

(3-99)
Vt = sin A [UcosSf + WsinSf + VeosA
where A is the local sweepback angle. Applying conservation of the tangential velocity component yields
_ , ; (3-100)
Avl = — tan} \Aulcosﬁf + Awlsmﬁf)

In all cases, a quadratic equation must be solved for the jump velocities. Choice of sign is determined by
the turning angle being compressive or expansive.

The case for k=1, constant A, Ui, =1, Wip = —sina, §;=0, t,x =0 may be readily solved and is
illustrative.

sina
Au. = F —Mm8M— (3-101)
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This is the well-known result for the constant supersonic region for a thin wing due to Ackeret. The solution
indicates that as ) increases, the jumps in velocity gets very large and that small disturbance theory is
violated locally. The subsonic leading edge case, for which conservation relations do not exist, occurs when
tan A > B. Such singularities do not arise for the full nonlinear potential equations.

A maximum sine of the sweepback angle, sin Ay, is defined by requiring that the Mach wave angle be
swept back at least A, from the leading edge.

sin\_ = (—sinA + BoosA YM (3-102)
m 0 0 [ ]
where sin A, is a code input. For A > \p, a subsenic leading edge heuristic treatment is used.

In order to evaluate the nonconservative gradient jump contributions, it is assumed that the local wave
front orientation for the second-order is the same as for the first-order case.

The wave front angle, ¢, is defined clockwise from the fin plane. On a wave front, the tangential
component of velocity is conserved in the local r, 8 plane, which yields

by, (3-103)
tane =
Awl
For the case of Equation (3-101),
tan A tank
tane = F m,sing: F — (3-104)
(B*— tan®}) B
This is also a well-known result from conical flow theory of a flat plate swept wing.
A second-order application of the method of “weak solutions” and Equation (3-103) yields
2 2 a2 2 _ a2 (3-105)
(sz) + (sz) -B (Auz) = f°Adu’ Au2 + Av'Au2 + Aw'’ Aw2
2

M, (3-106)

Au' = - AA

B
4
Av’ 2y M, - (3-107)
— =40q - — — Av
M? T2 3
2
Aw' 2y M, — (3-108)
— = Aqe - Aw
M B
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- 1
Av = 3 A(v:;) + A(w?vl) +2/3 taneA(w:;) - (v,, + wy, tane) A(w"l’) (3-109)

Aw

it

1
5 A(w:l}) + A(v? wl) + 2/3 cotcA(v?) - (wlb + vlbcote) A(vf) (3-110)

Closure cquations comparable to (3-98) and (3-100) are

W2b + Aw2 = tx‘[(l -F) Ula + F(U% + Auz)

; + Aw2 sin§ .

The supersonic trailing edge requires different treatment. Here, the flow goes from upper and lower
surfaces to the free stream. A formal full analysis would require an iterative solution for the flow turning
angle. In many cases, no solution would be possible. The simplest approach is to assume that the
downstream velocity vector lies in the plane of the fin. This is the same as t,=0.

A02= —tan} [Au2c038 (3-111)

At the trailing edge, there is a velocity and pressure jump on both sides of the arbitrary wake cut (the fin
plane). The resultant pressure coefficients and v component of velocity are averaged across the wake. At the
corner, the v velocity component is not averaged and the body boundary condition is used.

Turning angle for the cornerat k=1is

DTH = —sin =} “ -t Uyt (—taanU% + Wzb)]/lIQzJ a +¢f)1/2] } (3-112)

Turning angle away from the corner fork=11is

DTH = —sin~! H-:M(U%_ V)t (-tan8 Uy + Wzb)]/[(Qi - vfm +:§)]"2} (3-113)

Equation (3-101) illustrates the problem for subsonic leading edges or edges that sre slightly supersonic.
The quadratic solution for the velocity jump is imaginary or very large. For a delta wing in a free stream, the
first-order conical solution due to Busemann is well known. The pressure coefficient has a square root
singularity near the leading edge. The subsonic leading edge pressure distribution is assumed to behave like

A

k (3-114)
C.=—/———,k=21
Al 1

Here, &, is the value of § at the leading edge and & is the value of { at a point near the leading edge. Inner

edges are always assumed to be supersonic. The root point, k=1, is always supersonic. Ay is evaluated by
setting

= (3-115)
Ch= (Cp)k_1
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Alternat‘es to the expression (3-115) were tried, but proved to be somewhat less successful. One of these
alternatives was the mean value relationship.

Sk—1) Se-1) Ak (3-116)
C d = FCRTNT d
Sk ke & -8)

Here, Kl is the value of k near the inner edge.

The above relations hold for first- or second-order and either side of the fin.

Closure conditions for the subsonic edge were given by the requirement that the velocity vector
component parallel to the edge is conserved and the downstream boundary condition is satisfied. The former
requirement is given by Equation (3-29).

The boundary conditions are to first- and second-order:
W o=t [(1 -Fu_+F Ul]

1
W2=tx[(1-F)U1+FU2] $-117)

The velocity vector squared is determined from the value of Cpx

y-1
CkaM: Y
— +1 -1
2

-1
2 @

U2+V2+W2=1-{[ } 3-118)

At a subsonic side edge, it is assumed that the value of the velocities just leaving the edge are equal to
value at next k point out; i.e., ujx = (uy) k+1, ete.

3.9 FIN SURFACE ADVANCEMENT EQUATIONS

Characteristic compatibility relations for the fin advancement equations are sought for the y, x plane
with £ as an interior variable at y=0.

Starting equations for first- and second-order combined are

22



NSWC TR 86-253

1 1 A
ux—u\pox+p2oruw_",B2 W—E v/r+v£§r+ EEG] &x;g'

A 1 1 994 9N [1
- P + N Yok(rq )§ —o ddy(rq )+ - {e—a— — l+ ey {-;E,ra/ai.(rul) (3-119)

o, a(rv )
; *'H“+7}%%
du
v,—o.v +0r——=—v£Ex+u£E,r (3-120)
1 1 '
- - = - - 3-121
w o~ow, . u, w££x+ . uf‘&e ( )
Solution for the eigenvalues and vectors are similar to that for the body
[1+(r0 1 (3-122)
A==-0 F —— )\, = -0
x Br 2 x

Choice of sign is dictated by the incoming characteristic on either side of a fin. The first sign is for the

0 >0 side.
Left eigenvectors are

LyLy= £B11+(ro Y42

11 (3-123)
L2/L3 = —ro_
2 _ 2 _ 2 _ (3-124)
L1 = O,L2 = 1,L3 =ro,

The surface fin boundary advancement equations are evaluated at =0, where 8/dy —3/30 for the thin-
fin approximation. In the second advancement equation, 6 may be eliminated by using the unused third

irrotationality equation as was done for the body.

Terms involving ro, are dropped. However,

o/dx (mr) = -tx/r (3-125)
is retained. The first-order advancement equations may be written as
6, G, oH, (3-126)
—_— — 4 — =
& a€ 0 1
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1
w Ty T E =
+8 u +w,
E,= °
4
¢4 has been defined earlier in Section 3.6.
E12 = vllc4
w, v,
G'u= - ETIR (uli‘ -B-)¥ E +E'(:t(3ul

Er and E, have been defined in Section 3.3.

G12 =w - UIET/R

H1 = —dl[tx(:tB u,+w)+ u + wl/B],dl = (1/B~Rb)/R

w,

1
Cu=dlv1(i E +tx)—a2(i- — + ul),d2= —

B

Cia=dyt, Y

The second-order advancement equations are of the form

E, G, aH,

21 21 aS ar
— t 4+ —=C_ + —_— 4 —
ax P 8 21 qzv(ag ae)

ff'.z_.z_f_t _-_anl ?il_z-—c
ax x 3’5 ag 22

E’21 = (%8 Uy + w2)/c4

822 =u, /c4

3]

G, = ——

D,
2e
n= = Wyt w P ¥ T tE(EBuy +w)
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_ (3-140)
022 = w, = ET02 /R
H,= -d, [zx(j:p gy + w)) +uy % wze/B] (3-141)
C.o=d |t =, +quu)+t d |+~ .+ ) + (3-142)
n- 4T g Uge TANYY T £ Vg — Gy B Woe T QN Wy T Uy
1
Cop=d,t v, S= % E w, + E w/R),T=%*d w/p (3-143)

3.10 FIN-BODY CORNER ADVANCEMENT EQUATIONS

The fin-body junction is a crossflow geometry discontinuity. In Reference 10, the corner is treated as a
single valued point or streamline.

A full characteristic analysis involves the matrix equation form

P +AP,+BP =R (3-144)
x 3 W

The body and fin analysis have already considered characteristics in the §=0 and ¢ =0 planes. In the current

case, £=0, y=0 at the corner. In Reference 10, no unique solution was found, if one considers the corner as a

streamline and hence isentropic for the Euler equations. In Reference 10, a heuristic analysis led to two

alternate differential equations for advancing p. p combined with isentropy, total enthalpy and the corner
vector is enough to advance all variables.

Here, a nonunique set of relations is established by advancing Q2/2 and using both boundary conditions
for a streamline along a corner

2 Y=t
LR L a/ax[(/ ) ¥
T s - P/P (3-145)
2 y-DM 2
or
V= —2U+tanB'W (3-146)
ox
W=t U (3-147)
x

Equation (3-145) may be combined with the three vector velocity advancement equations. A combined
first- and second-order nonconservative advancement equation for (3-145) may be written as

E, kE, -t
— 4+ f — - —YBE)=VE — + —
™ & r E)= E + E,e
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(1 € oty + Lp e, L2 Y 1 1w W g
P p? rr v, rgeaa‘*'r p +FQN[:£ra/35,(rvl)+:E“—a?+:.a_g_
. All the transformation derivatives are to be evaluated at =0, 8=6;. In addition,
N
: AM? U+ view?
i Ue =U+ '—'—B2 ,Ee = 2 (3-149)
~

For first ovder, A=0, v,=v), and w,=wy. For second order, vo=vg, and we = wo,.

3.11 EXPLICIT FINITE-DIFFERENCE SCHEME

P 0 P

The MacCormack scheme?20 is applied to body surface points, field points, fin surface points, and fin-body
corner points. For all these points, the E vectors are to be advanced by a predictor-corrector finite-difference
scheme. For the fieid, there are three vector equations; for the fin and body, there are two vector equations;
and for the corner, there is a single equation.

.

A

. oE
E =E. + | — ) Ax
t ax /;

( oE ) . ( oE )
— ] +l=)
dx dx /*
E* is computed utilizing (8E/sx); which is evaluated by using forward or backward one-side differences for §
and O derivatives. E* is utilized to decode for the new velocity components at the predicted conditions. The
(dE/3x)* vector is utilized to obtain the final trapezoidal rule value of E; 4+ 1. The reverse backward or forward
one-sided differences for  and 0 derivatives is used to evaluate (JE/3x)"* at the predicted state. A decoding of
the E; +1 vectors yields the advanced velocities. For field points, a code option uses forward § and 8 differences

for the predictor and backward § and 0 differences for the corrector or alternate order from step to step. At the
surfaces, the boundary conditions are also used in the decoding.

Ax (3-150)

Ei+1=Ei+?

At a solid body surface, only forward differences in § are possible. If k=2 lies on a fin point, the §
derivative is set to zero.

For fins, the 8 differences must be always forward on the 8>6¢side and backward on the 8 <8¢side.
Points on a fin next to an edge need special consideration. For supersonic edges, § differences for points like A
or B in Figure 2 are always backwards. For similar points on an inner edge, £ differences are forward. For
subsonic outer edges, a forward difference to a point in the flow such as C is taken. For the point C in the flow,
the £ difference for a supersonic edge is always forward. For a subsonic edge, a backward difference to the
average of A and B values is utilized.

For explicit hyperbolic schemes, a CFL condition for stability is required. A formal analysis was not
made. The step size is chosen so that the upstream Mach cone from a point at x + Ax lies within the nearest
grid points of the plane at x.

The radius of the Mach cone at x, 8 + A, and §+ A& to first order is
i
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Ax)z 2 o2 |9
— = AD —_
(p ree+ | 4

For a constant § value, Equation (3-151) is a minimum at the surface.

2
(1-940 +x(1/p - R, AE (3-151)

A or,\21 12
(—x)min = min{r [1+ (L ___Iz) }AO (3-152)
B b o &0
For a constant 8 ray,
1 ar
(Ax)min = min {(x/B - rb) AE/[= + |-—b-| ]} (3-153)
B ax

Equation (3-153) is a minimum at =0 as well in most applications. A search as 8 varies for Equations
(3-152) and (3-153) is made for (Ax) min. The step size chosen is 0.9 of this value.

Discontinuities create large differences in advancement point velocity values. These differences must
somehow be dissipated for the first few steps after the discontinuity.

For a body planar discontinuity (e.g., a slope or inlet discontinuity), the £ derivatives at { =0 are set
equal to zero for the first step and increased linearly to the full value after i4 steps, which is a code input. A
curvature discontinuity does not have to be damped. However, much better results are obtained by marching

up to the curvature discontinuity rather than across it. Anigof 3 or 4 steps is usually adequate for damping
body discontinuity disturbances.

At a fin leading edge, the 8 discontinuity disturbance can be very large and, for swept back fins, it can
continually be created until all § traces cross the leading edge. Both § and 8 derivatives can be severely
affected, in particular for a subsonic leading edge. The root velocities are also affected.

Only damping of the 0 derivatives just past the leading cdge is uscd. The number of steps, igf,, for
damping is computed from the turning angle of Equations (3-112) or (3-113).

idfz INT ||9.55DTH| + 0.5 (3-154)
INT is the integer conversion of the floating point value. For a subsonic edge, the number of steps is doubled.
At the root, igr =6 is chosen for a subsonic edge.

Damping of 6 derivatives for the fin is similar to § derivative damping for a planar discontinuity. The
derivatives are linearly increased from zero to the final value after igrsteps. At the root, no damping is used
fo- the first igestey 3. The velocity vectors are advanced using the corner jump relations twice: for the first
jump, the body shape is advanced; and for the second jump, the {in shape is advanced.

Due to the strong velocity oscillations on a fin with subsonic leading edges and for subsonic ridge or
surface discontinuity lines, no attempt was made to compute jumps for fin ridge discontinuities. For a fin
with all supersonic edges, the jumps could be computed.

It is assumed that for a good design, the body drag contributes most of the wave drag and, hence, the fin
wave drag may be approximated. The normal force contribution of a fin is given fairly accurately by the plan-
form. The wave drag of the fins is given by the thickness distribution and deflection angle of the fins. The
characteristic compatability boundary condition will capture small jumps on the fin surface. Anequivalent
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thickness distribution would be given by multiplying the actual tox by a thickness reduction factor, t,r, and

then accounting for the actual fin thickness when the axial force contributions are computed. This will be
elaborated on later.

In order to dampen, somewhat, the very large amplitude oscillations in the surface pressure for lifting

surfaces with subsonic or nearly subsonic edges, a smoothing operation was introduced for the E vectors
before decoding E; ;.

A weighting function is chosen as Qg = V{2 + V2 + W2, which is a positive definite quantity. Field,
body surface, fin surface, and corner vectors, E, are smoothed as follows:

Field
E=0-C_ =Cii14=Cit1— €, k+l)Ej'.k
+ Cj—l.k Ej-l.k + Cj+l,kEj'+l.k + Cj.k-lEj',k—l
P (3-155a)
+ Cj,k+l Jok+1
Body
-_— C
Ej.l - (l_cj-l.l - Cj+l.l)Ej,l + Cj—l,l Ej‘_1,1 ¥ C,-H,lEj +1,1 (3-155b)
Fin
(3-155¢)
—_ C C
Ej-k - (l_cj.k—l—cj.kH)Ej',k + Cj.k-lEj,k—l + Cj.k+1Ej.l¢+1
Corner
Ej.k = (I_Cjil.l_cj,Z)Ej',l + Cjtl.lEj'_tl,l + Cj'zEj‘.z (3-155d)
Here,
C _ I(Qs)j.k B (Qs)ji‘l.kl
jtlLk Vs (3-156a)
@jn* Q)14
c _ C, |(Qs)j'k - (Q,)J.’ k:tll
jok1 ™ (3-156b)

[(Qs)j’ kY @) b 1]
C; is a smoothing constant level, typically 0.2.

Note that on the 8 >0¢side of the Nth fin, the data are stored at j=JM + N.
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The damping smoother does somewhat limit the amplitude of oscillations. The oscillations die down far
from the leading edge.

The explicit marching solution will fail when the value

~1
1+12—M2(1—Q2)

becomes negative in Equation (3-93). To aveid a complete halt, the Bernoulli quantity is set to zero at a solid
surface and the pressure becomes the vacuum value. Readjustment of the total velocity components requires
two additional relations. One of these relations is given by the fin or body boundary conditions: at the corner,
both boundary conditions are used; on the body, the W component remains unchanged; and on the fin, the V
component remains unchanged. Sometimes useful results can be obtained by this delay of solution

breakdown. A complete breakdown in the computation occurs when the vacuum values of Cj, are propagated
along the solid surfaces.

4.0 HIGH MACH NUMBER INVISCID SOLUTION

At high Mach numbers, the origin Mach cone crosses pointed body surfaces and other compressibility
effects become dominant. Here, an adaption of the local pressure solution methods of Reference 9 is used. The
local pressures depend primarily on the orientation of the local normal with respect to the free-stream
velocity vector. These methods are extended and applied in References 21 and 22. The methods are

summarized in Table 1. The methods use Newtonian, tangent cone, tangent wedge, and Prandtl-Meyer
pressures and empirical blends of these.

Asindicated in Section 1.0, Euler code solutions such as described in Reference 10 give good solutions for
complex configurations. The local solution methods run much faster than the marching Euler solution and
provide rapid trade-off computations; however, they sacrifice considerable accuracy.

5.0 INVISCID LOADING COEFFICIENTS

Axial Force Coefficient

dC 2n 9r NF .,
A _b on (5-1)
A, T [0 ry ™ Cpbde + Z‘ jr (Cppn‘xpn" pmn‘xmn)d"

' = in

Here: nrefers to the fin number; Cpp, is the pressure coefficient on the 8> 8¢side; Cpm is the pressure

coefficient on the 8 <O¢side; typ and tym are corresponding body slopes; rj and r, are inner and outer fin edge
radii; and b refers to the body.

Due to large control deflections, fin discontinuities, or subsonic leading edges, some finned body

configurations cannot be computed at the given geometry. The computation is made at reduced values of toxn
= tyon. The adjustment to the fin contribution is given as

y ' v U (5‘2)
t —-C _t =(C -C ans, +t [/t>, (C_+C )
ppn " xpn pmn xmn ppn pmn fn xon rfn " ppn pmn
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!’rime, h?re. refers ‘to the red}xced slope geometry values. One uncertainty is whether or not the second term
in Equation (5-2) will be lost in the noise of the oscillating pressure contribution to lift. Here, t;f, = txon/toxn-
Normal Force Coefficient
dCN 2n ar,
A, — =~ — si
R I L (rbcose + P smB)Cpde
NF . (5-3)
+ J (C_-C_)sin®, dr
, ppn " pmn fn
n=1 in
Pitching Moment Coefficient
dC_ dC,, e ary
LRAR Ti;- = —(x—x)AR -:1;- + Io rb;x- cosecpbde

NF ron
+ Zl J ooy (€t = Copy b )
n= in

It is not certain whether the adjustments of Equation (5-2) are really needed for the finned contribution of
moment due to drag.

Large combinations of a and § do not permit inviscid computation of pitching moment and normal force
in the pitch plane. Computation at reduced values will permit extracting the linear dependences. First, the
computation is made at a’ with no control deflection. Then, the computation is made at a’ with a control
deflection &'. This is readily done, since the computational code saves computational values up to a section
end and can be restarted at the section end and run to the end of the bedy. For more than one set of control
deflections, additional computations may have to be made.

The adjusted inviscid normal force coefficient is then given by

v . ’ , (5-5)
CN = CN sina/sina’ + ACN tand/tan 8
AC'y is given by

. C -y (5-6)
ACN=CN(Q,8=O)—CN(0,8=0)

The pitching moment coefficient is treated in a similar manner. The remaining coefficients are assumed to be
computed at small angles of attack and side slip. For configurations without quarter-plane symmetry, a and

a’ must be relative to the Cy =0 angle of attack. Note that Cy and C,, do not go to zero simultaneously for
half-plane symmetry.
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Side Force Coefficient

dCY 2n arb
A, — = ing — —
R 4 Jo (rbsan P cosB)CpbdG
NF .r (5-7)
on
+ Z ]r (Cpp"—Cpmn;cosefndr
n=1 in
Yawing Moment
dC dC 2n ar
LA — o gAY _ I 27
RAR o (x x)AR o . r P sanCpbdG
N, oD
- Z J r(C ¢t —-C t )sinB_dr
ppn xpn pmn xmn fn
n=1"Tin
Rolling Moment
2n a.»b
L_A = -—] r,.— C .do
ROR™e , boo pb
(5-9)

NF ron
+ > I r(,, ~C,.)dr
n=1 ",

The 0 integrals need not be taken to 2n in all cases, except for LM =6. For no fins, the 0 integration is
continuous. For a finned body section, the 8 integrals are piecewise continuous. 0 integrationis

approximated by a three- or four-point Simpson’s rule. This implies a minimum of three points between fins.
The 0 variable step integration is converted to ¢ equal step integration by the 36/a¢ Ad values.

The r integrations are carried out with the aid of the § and { transformations. A Simpson’s three-point or
trapezoidal rule integration is used for the points between k=KI, KO. Kl and KO do not lie on the edges. The
end interval integrations utilize an extrapolated trapezoidal rule.

After the body section computation is completed , the coefficients are integrated from the origin to a
value of x (i.e., a load coefficient buildup). For a section with no fins, a piecewise leap-frog three-point or
quadratic approximation for the coefficient gradients is utilized. For a section with fins, a piecewise linear

approximation is utilized for the coefficient gradients. Note that those integrations are not the same as
trapezoidal and Simpson’s rules.

6.0 SKIN FRICTION, BASE PRESSURE, AND HIGH
ANGLE-OF-ATTACK PREDICTION

6.1 SKIN FRICTION

The approach here is that described in Reference 23. The body skin friction is based on the body surface
area and body length Reynolds number, The fin skin friction is based on twice the fin planform area and the
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mean aerodynamic chord Reynolds number. The mean skin friction coefficient is given by the Van Driest
model of Reference 24.

The skin friction coefficient for a body or fin element is given by

S R
1.328 6-1a)
C,.=-2lc. + (=22 _¢c )l forR. >R (6-1a
AF FL
AR RNL \/RNC FC NL NC
Sw 1.328
C,.= — forRNL<RNC (6-1b)

AF ™~
. A, VR,
Here Sy, is the element wetted area, AR is the reference area, Ryc is the critical Reynolds number, and Ry is

the element Reynolds number. Ry for the body is chosen as 1.0 x106 and 0.5 x 106 for a fin. The Reynolds
number is given by

(6-2)

Ry, =R, oM (10x109L L

RMmruM is the Reynolds number, per Mach number, per foot, per million, which is a function of altitude for a
given atmosphere. L, is a conversion factor for converting the element length, L, to feet. Cpr, and Cpc are
mean skin friction coefficients at the Reynolds numbers Ryt and Ryc, respectively.

The mean skin friction coefficient is given by

_ (6-3)
d/VC, - logCp=d,

where
d, =0.55723 |sin ™' (C) + sin ™! (cz)] / [A (Tw/Tm)*]
d,=logR, —1.26log (T JT )
C, = (2A% - BY(B? + 4D}

C,= B/(B? + 4 A%}

-1 %
A=Y M2 T
2 ® w o

-1
T IT =1+0.9 1= M2
w « 2 o
Cr in Equation (6-3) is solved by iteration at Ry =Ry and Ry = Rnc.

L for the body is the body length. L =L¢, the mean chord, for the fin for a nontrapezoidal planform is
estimated for an equivalent trapezoidal planform.
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From Figure 3,
XMA
}S,=A,=4SMAC, +C )= [ oy SO 5Dz (6-4)
- 1 XMA
S A= - SMA%(C, +2C, )=} I (S0? - SPdx (6-5)
"6 XMI

Cim and Cy, are the equivalent trapezoidal planform root and tip chords, respectively. Use Equatlons
(6-4) and (6-5) to solve for C;, and Cyyy, and, then,

L2 c -c) (6-6)
78 ~¢2)

rm -
This approach avoids having to compute the chord at the spanwise location of center of planform area.

6.2 BODY BASE PRESSURE AXIAL FORCE

A solid noncircular base is considered. No extensive set of data bases seems to be available.

Approximate wake boundary layer interaction models or Navier-Stokes model solutions are not compatible
within the current context of rapid computation.

A rational approximation is developed that utilizes a minimum of available data:

— ~ 2,.2 B
C=C,+ [C,,, ©®) - cm] P2 @) (6-7)
C,,=Cp [M' (e)l K+C M (1-K) (6-8)

Cprr is the base pressure coefficient assummg a local free-stream Mach number, M"- In Reference 26,
Chapman correlates base pressure data using pp/p= = py/p’ p/p= for axisymmetric bodies. p'/pwis the
pressure distribution at the end of a body extended by a pseudo cylinder. The cylinder has a diameter and
length equal to the base diameter. For a noncircular cylinder, the cylinder length may be assumed to be
equal to the equivalent circular diameter based on the base area, (4 Ap/n)¥. This approach is possible for the
low Mach number regime. The base pressure distribution then becomes

9 9 ' ’ (6-83)
C =C_MMYQaM:+0.7C)-C
pr prr ® p p
For higher Mach numbers, this approach does not seem feasible and Cy,, is assumed to be Cpr = Cppr.
!
K=|lwx ||?
- 1 (2
C_=— [ C_do (6-9)
po 2n pr
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Here M' (8) is the local Mach number at the end of the body, Cp2 (M) and C,3 (M') are the mean base

pressures from References 25 and 26, respectively. Cp2 is the base pressure for a wide and long plate and Cp3
is the base pressure at the end of a long cylinder. « is the local curvature

e T (L2

r, ®° r, 9

1 ,arb 21372
r [1+ (-—-—)]
b Y 30

k(0) = — (6-10)

Kma i the maximum curvature. For a circular base, K=1and Cp = Cp3. However, for a circular
base, there is still an angle-of-attack dependence. The C;, variations in Equations (6-7), (6-8), and (6-8a) are
clearly arbitrary and need some correlation with data.

The base axial force coefficient is given by

2n
2 -
L rb(e)[Cpo+Cpr(9)]d6 (6-11)

CAB -

N

Ap

At low Mach numbers, the C,, computation given by Equation (6-8a) is sensitive to the M’ computation
for bodies with lifting surfaces. In this case, the value of Cap given by Equation (6-8) should also be computed
with no body extension. A minimum of the two computations is the best choice.

6.3 HIGH ANGLE-OF-ATTACK PREDICTION

The methods of Reference 2 predict nonlinear charcteristics for the pitch plane as well as rolled
orientation. These methods combine nose vortex tracking, surface singularity solution, leading and side edge
suction, and fin shed vortex tracking.

An alternate approach is to adapt the crossflow lift extension of Reference 27.

(6-12)

o C

C, (M_sina)n(L")sinalsina| (L C, .d
C =C. 4+ % I NC
NCO

N NI
Ap
Here, Cq. is the crossflow drag coefficient for an infinite circular cylinder, n(L') is a correction factor for
a finite length of L' “calibers”, and d is the projected width of active loading perpendicular te the negative of

the crossflow velocity vector. Supersonic leading edge width on fin spans are not included. Side edges and
subsonic leading edges widths are included. L' is a mean caliber value given by

L
L= Lz,[ dds (6-13)

0

Cnc and Cnco are the modified Newtonian estimates for the cross section of interest and for a circle of
diameter d, respectively. Note that a should be with respect to the Cx =0 angle of attack for half-plane body
symmetry.

34



NSWC TR 86-253

. What is really being corrected by the Newtonian ratio is the different wake. The impact side should be
estimated by Cnp, which is the inviscid normal force coefficient. Hence, the ratio refers to the lee side. For a

body that is not symmetric about a horizontal plane, the crossflow lift for negative a is different than for
positive a.

The pitching moment is given by a similar integration:

_ C, L") sinalsinal (L (x—x') Cye (6-14)
cC =C ,~ ddx
m ml C
AL, 0 NCO

Here, a should be with respect to the Cp,, =0 angle of attack. Here, x' is the moment center location, Lg
is the moment reference length, and Cyy is the inviscid moment contribution.

The evaluation of Cnc and Cnco requires further development. Figure 6 illustrates some possibilities.
For half a circular cylinder, the Newtonian normal force is $ d Cp,. For the wake surfaces, '

__ b2 )
CNC = Cpo L (k . ni) cos0 ds (6-15)

Here, s, is the arc length and the integral is the over all wake surfaces.

1 al’b
cos® + — — sinB
0

sina/|sina|

k'c- n, = "2 0.0 (6-16)

k;- ni=0fork'c- ni<0.0

For a body with quarter-plane symmetry, Equation (6-16) is 0 at 8=rn/2. For a body with half-plane
symmetry, Equation (6-16) will determine the shadow boundary at 8=80,. Fora>0,0<0<0, are the limits of
integration. For a<0, the limits are 8, <8 <m. ‘

For the fin-body section, it is questionable as to what should be the wake surface and how much to
integrate over. The choice taken here is to treat the body and fins independently.

The value of d, then, is

NF

_ . (6-17)
d-db+ 2 Z S'l smeﬂz

n=1

Here NF is the number of {ins in the half plane and S, = SO-SI for each fin that has a side edge or leading
edge that is subsonic. Cnc/Cncod becomes
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9 ( 1 arb ' 2
CNc OMA co cosO + ;— a—e- sme) Np
LR b . 3
o_d=3 [ I r,d8+ > S sin efn} (6-18)
"NCO eMI [ <1 8rb>2]i n=1
1+ | — = _
Ty a6

Here, Oy is the maximum 8 and 0y is the minimum 6 as determined by Equation (6-16).

Thus, for a circular cross section with a monoplanar wing at 85, =90 deg and semispan, s, one obtains
Cnc/Cnco d = dy + 3s for a subsonic edge. d, is the value for a supersonic edge.

In the application of Equations (6-12) and (6-14), the values of

L) JL CNC ddx and — n(L’) JL (x-x1Cpp ddx
AR o CNCO ARLR o CNCO

are only geometry dependent.

In evaluating Cnp and Cy, one must sometimes reduce the value of a to a’ in order to obtain a
computation at high angle of attack. The control deflection also must be reduced for large control deflections

by a factor t,g. For configurations without quarter-plane symmetry, a must be relative to the Cyy=0 angle of
attack.

Pitch plane coefficients are then adjusted as

. ., " . (6-19)
CNI = CNI sina/sina’ cosa + (CN - CN)/tr8
’ . . , e * (6'20)
CMI = CMI sina/sina’ cosa + (CMI - CMI ),trﬁ

Implementation of Equations (6-19) and (6-20) requires two separate runs: thke first runisata=a'and
the control deflections are zero; the second run is at a=a’ and the control deflections are reduced by t.3.

Single prime values are for the first run. Double prime values are for the second run. The valuesofaanda’
must be altered for half-plane symmetry as earlier discussed.

The axiz!l force coefficient prediction requires more extensive computation. The axial force coefficient
is assumed to vary as

(6-21)
CA=(CAO+CA23in20)oosa+tan8(CADDtan 5+CANDsina) cosa

Here,

. 2 (6-22)
(CAO+CA2sm a)cosa=CAB (a, 8=0)+CAF+CAI(°’8=0)

Four computations at (a=0,8=0), (a=0,8=0), (a=0,8=0), and (a0, §=0) are required to
approximate the four coefficients of Equation (6-21). However, the entire range of a and § variation is
established for a given Mach number. The restart capability limits the amount of computation required. Caj

is the inviscid component of axial force coefficient. C at large combinations of a and § is nonlinear and
difficult to estimate.
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7.0 EVALUATION OF THE NUMERICAL METHODS

7.1 INVISCID POTENTIAL THEORY

7.1.1 Continuous Bodies Alone

A number of examples of the computational feasibility of the implicit Van Dyke model were given in
References 6 and 7. The significant differences between first- and second-order linear potential theory are
illustrated best by conical self-similar flows.

Figure 7 shows the computational comparison between the linear potential models and the explicit
Euler model, SWINT, of Reference 10 and the full nonlinear potential implicit model of Reference 28. The
reference area is the cone base area; reference length is the cone length; and moment center is the nose. The
nonlinear potential code solution was an unpublished solution provided by G. Smith of DEI-Tech, Newport
News, Va. The nonlinear solutions are distance asymptotic, while the linear potential solutions are given by
an unfactored matrix inversion. The linear potential solution utilized a JM =19, KM =10 uniform grid. The
nonlinear solver grids were finer. Figure 7 indicates that the second-order solution compares fairly well with

nonlinear solutions and is a significant improvement over the first-order solution. Run time is much faster
for obtaining a starting conical solution.

Figure 8 illustrates another cone solution for a body with a curvature discontinuity in the cross section.
Stancil refers to the second-order linear potential surface singularity code of Reference 29 (the unpublished
solution was provided by R. Stancil). References are the same as before. Note that the Stancil code runs
longer than the nonlinear codes with only fair accuracy. Once again, the second-order potential provides a

much improved solution. The second-order code utilized a clustered grid (nonuniform) withJM =21,
KM=10.

Nonconical configurations have smaller body slopes further back on the body.

Figure 9 illustrates a computation for a body with 2/1 elliptical similar cross sections. The body is
described by

tan (20 deg)x (1 —-0.5x)

rb(x, 0)= Xx)T®) =
(2.5 + 1.5 cos 20)*

(7-1)

Reference area and lengths are the same as before. For the linear potential codes, JM =21, KM =8, IM =21
(number of constant x step lengths). NCOREL refers to a full nonlinear potential implicit relaxation code
solver of Reference 30. NANC is the current linear potential code. Note that the first-order solution is quite
adequate for this overall slender configuration.

Figure 10 shows a very complex nonsimilar cross-section body for which a wind tunnel model with
pressure taps is described in Reference 31. The body is given parametrically as

X = [1 + {1.35 T®)-1

sin’ nx} sin@, (7-2)

zb/X(x) = [1 + [1.35T(91) -1+ 0.35/cos(3l

sin2nx} cos 6x (7-3)
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-1

T(0,)=11.25 — 0.25¢c0520, + 0.13174 (cos8, — c0536,) (7-4)
yb/zb =tand (7-5)
— (2 2% (7-6)

ry = (yb +2, )

Given 6, one can solve for 8 by Newton-Raphson iteration, utilizing Equations (7-2) through (7-5). Cp load
comparisons with data are shown in Figure 11. References are as before. For this fairly blunt body, second-
order results significantly improve the first-order results. The flow is separated for x > 0.75. However, the
integrated pressure results agree quite well with the various computations.

The final continuous body comparison is shown in Figure 12. The body (described in Reference 32) has
a Haack-Adams area distribution 3/1 elliptical cross section. Reference area is the maximum area at x/L =
0.68. Reference length is the equivalent circular body diameter, Lg = (4 Ag/n)*. Moments are taken about
%L = 0.6. The Haack-Adams equivalent axisymmetric body is described in Reference 33. Departure from
the nonlinear potential solution can be attributed to compressibility. Additional departure from the data can
be attributed to crossflow separation. The NCOREL computation is taken from Reference 30. Body
description near the nose was modified so that the blunted body could be approximated as a pointed body. For

0< x/L < 0.3, a third-order polynomial for the equivalent circular body radius was used as described in
Reference 7.

7.1.2 Discontinuous Bodies Alone
Some of the results to be shown here were described in Reference 8.

Figure 13 depicts a comparison with the data of Reference 16 and an Euler computation. The Euler
computation starts with a blunt body solutior computed by a separate time asymptotic Euler code followed by
a computation to account for the angle of attack and then the explicit marching SWINT computation. The
two different Van Dyke second-order potential axial source and doublet distribution computations of
References 3 and 6 produce results superior to that shown for the second-order NANC solution. However,
when the general approaches of References 3 and 6 were used to create a starting plane of data for an explicit
marching solution, the results were inferior to that shown for the current NANC computation. The nose-cone
junction is a curvature discontinuity that leads to a jump in velocity gradient and pressure gradient. It is
seen that the axial force result is adequate, but that the normal force and pitching moment results are
degraded. The results are very sensitive to the input gridding. An optimum selection of a (i.e., the match
point) and DO that controls the step size may require several trial runs up to the nose-body junction.

Figure 14 depicts a demonstration of the capability of local 2-D jump relations to predict the pressure just
downstream from a planar discontinuity. The Euler solution was taken from the tables of Reference 34. The
“first-order solution deviates significantly from the second-order solution before the discontinuity as well as
after. The second-order linear jump prediction is comparable to the Van Dyke hybrid solution of Reference 5.

Figure 15 depicts the local pressure distribution just downstream from an inlet discontinuity. The
inlet lip lies on a 15-deg ray from the origin. Compressive turning angles varied from 10.8 to 15.7 deg.
Accuracy deteriorates as oblique shock detachment angles are approached. Second-order accuracy is still

quite adequate when compared with the first-order solution. Reference area for dCn/d(x/D) is the cross-
sectional area just downstream of the inlet face.
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. The last local jump solution case is taken from Reference 14. Mw = 1.50na long cylinder with all
d1§turbance velocities equal to zero before a 12-deg boattail. The cylinder is at a=p’ =0 flow inclination. For
this case, Van Dyke showed that B=0 gives a superior result. A table of second-order Cp values for various
combinations of methods is given below for comparison with the Prandtl-Meyer value of Cp=~0.293:

B=0 B=1
‘Linear Jump -0.274 -0.122
Nonlinear Jump -0.301 ~0.223

Other computations show that B =0 is superior for tiares following a uniform flew also.

A last comparison is for the body of Figure 16. The first body section (0 <x<1.0) varies from a 10-deg
cone to a 10- by 20-deg elliptical cross section. The semi-major axis varies as a=x {tan (10 deg) + [tan (20 deg)-
tan(10deg)lx}- The second section (1.0 < x < 2.0) has an elliptical cross-section conical frustum with b=tan
(10deg) xand a = tan (20deg) x. The first discontinuity leads to a 0.0 to -8.8-deg expansion (compression is
positive) over the quarter plane. The third section (2.0 < x < 4.0) is a constant cross-section ellipse withb=2
tan (15 deg) and a=2 tan (20 deg). The computational comparison is given in Figure 17. No suppression of
derivatives is used for the first discontinuity. The second discontinuity has expansion turning angles from -7.5
degto -20.7 deg. The £ derivatives were suppressed for four steps after the second discontinuity. Reference
area is the base area; reference length is (4 Ag/n)1/2; and moments are taken about x = 2.0.

7.1.3 Configurations with Lifting Surfaces

A large number of computations indicate that superior results occur for the approximate fin boundary
condition, F =0.0, for all fin computations. Figure 18 indicates some comparisons for supersonic leading edge
jump conditions. The body shape is rp, = tan (15 deg) x (1-0.5 x). Flat plate fins begin at x=0.5. The span, s,
is 0.15. For A = 50 deg, the compressive turning angles are too large for attached oblique shock solutions.

Figure 19 depicts a number of biconvex cruciform fin configurations in the 45-deg roll positicn.
Comparisons with SWINT computations are made for various thickness ratios, t/c, and control deflections, §,

as given in Table 2. Resuits for FIN 4 are quite good, considering the fact that the pressure oscillations were
strong for the subsonic leading edge case.

The next example is similar to the previous examples of Figures 19 and Table 2. The FIN 1 fins are
rolled to the plus position. The horizontal fins are shifted back one-half caliber on the body so that the fins are
staggered. The fins are flat plates. The fins are all deflected 10 deg (roll control). The body length is 6.5
calibers. Free-stream conditions and reference dimensions are the same as for the previous case. Coefficient
comparisons with a SWINT computation are given below:

Ca Cwn Cum Cy Cn Ce
NANC (1st) 0.32 0.74 -1.18 0.050 -0.23 1.27
NANC (2nd) 0.35 0.79 -1.23 0.053 -0.25 1.37
SWINT 0.33 0.82 -141 0.086 -0.34 1.28

It is seen that the first- and second-order computations compare favorably. The small induced side force and
moment are sensitive computations.

The next computational example is for the configuration of Figure 20 and References 35 and 36. Data
and computations are for Mo =1.5. At this Mach number, the wing leading edge is subsonic and the tail
leading edges are barely supersonic, but are treated computationally as subsonic. Figure 21 compares
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pitching moment and normal force ceefTicients for two roll positions. In Figure 22, side moment and side force
comnparisons are shown. Rolling moment is a more nonlinear coefficient. Atat = 10 deg, ¢ =50deg, the code
predicts C¢ = -0.32; the data value is Cy = -0.75. Reference area is the base area and reference length is the
equivalent circular body diameter.

The next computational example is for a body-wing-tail configuration from Reference 32. A bodyv-alone
comparison has been made earlier in Figure 12. The geometry for the 3/1 ellipical cross-section body configur-
ation is shown in Figure 23. Figure 24 shows a comparison of pitch plane coefficients. References are the same
as for the body-alone case. Nonlinearity for the moment occurs for small a values. A roll control computation
was attempted at M, =2.0,6 =704 deg, a=udeg C¢ = 0.39 for the computation and the data value isCp,=0.5.
The computation is smoothed. An unsmoothed flat plate fin computation yields C¢ = 0.45.

Thus far, all the computationa! examples use analytical description of the body geometry. The next
case taken from References 37 and 38 required a numerical input of data. The blunt nose variable elliptical
cross-section body is shown in Figure 25. The spherical nose cap was input analytically. Numerical data
were generated from the right-side columns of Table 3. The nose cap hasacircular cross sectionand a
discontinuity at the shoulder The cross sections of the body vary from circular toa 3/1 ellipse and back to
circular. The fins are the same as for the previous example. The body-alone forebody axial force (including
surface friction) is 0.20; the experimental value is 0.18 for M, = 2.5 References are the same as for the
previous example. Figure 26 compares pitch plane body-alone comparisons withdata. Note that the first-
order theory i.ceds a significant compressibility correction. For this complex shape, the second-order solution
departs from the data significantiy above a 4-deg angle of attack. Clearly, a crossflow correction will drive
the solution in the wrong direction tor sccond-order theory. First-order results will be improved by crossflow
corrections. The flow over the rear porticn of the body probably separates longiludinally as well as in the
crossflow plane. Cy and C, for the bodv-wing-tail configuration are compared in Figure 27. Cy comparisons
aregood. C,;, is a sensitive computation for x., close to x'.

7.2 HIGH MACH NUMBER PREDICTION

Figures 28 and 29 depict comparisons for the configuration earlier considered in Figure 23 and
described in Reference 32. The BWT1 comparison considers only the finon the windward side. The BWT2
computation takes into account both fins. Note that the local solution method prediction for the body normal
force is above the experimental, hence, a crossflow correction would be inappropriate. The same is true for
the entire configuration. The same conclusion is true for the moment computation. x., experimentally is
close to x’ for the entire a range. hence, the computation is very sensitive Departure from the data scems to
occur at high angles of attack where the flow turning angles used for the local wedge shock and Prandt!-
Meyer solutions on the lifting surfaces become large.

A slightly different approach is taken for the computation for the configuration shown in Figure 30 and
taken from Reference 39. Figure 31 compares linear aerodynamics extrapolated from computationsata=5
deg with data for M, =2.86. In this case, the normal fi.rce computation is below the data The moment data
are typically more nonlinear.

Computations for higher Mach numbers show the same trend as in Figures 28 and 29 for general
configurations with lifting surfaces, but closer to the data. On the compressior side at higher angles of
attack, shock detachment is delayed for higher Mach numbers.
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7.3. COMPLETE CONFIGURATIONS INCLUDING VISCOUS ESTIMATES

7.3.1 High Angle-of-Attack Normal Force and Pitching Moment

Here computational examples will be given for the quadratic dependencies on angle of attack predicted
by Equations (6-12), (6-14), and (6-19) through (6-21).

Figure 32 depicts a comparison for the missile model of Figure 25 at M =2, The normal force
computation is quite good. Allinviscid computations were made at a’ = 5 deg. The data departs from theory
for the moment at small angles of attack as had been shown in an earlier inviscid computational comparison.
The inviscid model is the second-order potential theory.

Figure 33 shows another comparison for the 3/1 elliptic body missile model at Mo =3.95. The inviscid
model is the local solution high Mach number escimate. Lifting surface contributions to the crossflow terms
are neglected. The normal force computation is significantly improved over that for Figures 28 and 29 when
a’=5degis used. The center of pressure is also not predicted well for this Mach number.

Figure 34 shows a third comparison for the 3/1 elliptical cross-section body model. This time the effect
of a -10-deg control deflection was considered; a’ =3 deg was used for this case. The increment due to control
deflection was assumed to be a constant and was computed at a=0 deg. The actual control deflection about
the fin plane was -7.04 deg. At M= 1.3, the computation was considerably more sensitive for the subsonic
leading edges. Again, the data indicates considerable nonlinearity for the pitching moment close to zero
magnitude.

The next computational comparison is for the configuration of Figure 35 and Reference 40. At
Mo =2.5, all leading edges are supersonic. The computations for a <10 deg were made directly. Fora>10
deg, a’ =10 deg was utilized. At M,=2.5, the comparison for pitching moment in Figure 36 is good, since the
moment center is not close to the center of pressure.

7.3.2 Axial Forebody and Total Force Prediction

The first coinputational example for this section returns again to Lthe 3/1 elliptical cross-section missile
model. Figure 37 compares forebody and total axial force coefficient at a=0. The base pressure model leads
to overprediction of the total axial force coefficient. The forebody axial coefficient is predicted somewhat
better. It is not clear from Reference 32 what accuracy can be expected for the base pressure correction.

In Reference 39, the base pressure axial force coefficient is given as a function of angle of attack. A
table of comparison for Cag is given below

M CaB Capg (Data)
1.6 0.128 0.096
2.16 0.098 0.087
2.86 0.067 0.063

The current model overpredicts Cog. Considerably more data are needed to modify the current
estimate. At Mo=2.86, the high Mach number model was used. Conversion from Cp to M uses the isentropic
relation. This case has very large turning angles from the end of the cylindrical afterbody onto the boattail.
The expansion angles vary from 9.5 to 16.0 deg.
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' The lasf. computatior.\ in this section is for the 3/1 elliptical cross-section missile of earlier examples.
Fn‘gurc 33 depicts a comparison between data and theory for the forebody axial force at zero angle of attack
with a -10-deg control deflection. At My,=1.6, the increment in axial force due to control deflection had to

extracted from the zero thickness case. This increment was added to the undeflected fin case forebody axial
force with nonzero thickness.

8.0 CONCLUDING REMARKS

Computational methods have been developed that predict the aerodynamic loading on noncircular
body configurations for supersonic Mach numbers.

At small incidence and for the lower part of the Mach number range, considerable effort was expended
in developing a finite-difference second-order linear potential model based on the ideas of M. D. Van Dyke.
The implementation of the second-order model required some significant new research. Both first- and
second-order solutions are obtained by implicit and explicit finite-difference marching computations. Other
first-order potential solvers utilize surface singularity models almost exclusively. Jump discontinuities of
supersonic leading and trailing edges of lifting surfaces and for planar body discontinuities are predicted by
local 2-D jump relations based on the linear equations of conservation. At the subsonic leading and side edges
of fins, the jump relations are not applicable and the computation would appear to be elliptic in character.
The solutions in this case also have a strong square root singularity as well at the leading edge. It was
anticipated initially that only a first-order surface singularity approach would remove this severe obstacle to
successful computation. However, an approximate starting solution or jump solution at the fin edge followed
by a marching solution did indeed lead to useful normal and even axial force prediction for fins with subsonic
leading edges. However, the pressure coefficients are strongly oscillatory and the solutions are somewhat
sensitive. For other configurations with no significant subsonic edges, the pressure predictions are quite
good. For blunt nose bodies, the solution is poor on the nose, but overall aerodynamic coefficients are quite
adequate. The entire body must lie within an effective origin of disturbances free-stream Mach cone.

The shearing transformation between the body surface and the free-stream Mach cone, the explicit
boundary advancement model, the local 2-D jump relations, and the “thin fin” geometry model are motivated
by the work of A. Wardlaw in developing the SWINT code. The SWINT code was also very useful for
generating comparison computions where no experimental data were available.

The local solution model, wher adapted properly, predicts quite adequate inviscid loads.
Computational times are very short. The simple crossflow and average skin friction models predict forebody
axial force and normal and pitching moment well when combined with the inviscid prediction for the pitch

plane. A full 6-deg-of-freedom model at large incidence would require vortex generation and tracking
methods.

The current computer code utilizes approximately 250,000 octal storage locations for a 15-by-60 grid.
This storage requirement can be significantly reduced for the half-plane symmetry case where a 15-by-30
grid is adequate. Computational times depend on the gridding sizes and dimensions, body length, Mach
number, and Mach number range. Computational times vary from 0.05 to 30 s for the CDC CYBER 875.
Considerable flexibility in geometry and free-stream data input modes is built into the code. A separate
user’s guide is in preparation as a companion document to this report.
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TABLE 1. LOCAL SOLUTION PREDICTION METHODS

Cross-Sectional Shape

Body Section

(Windward Plane)

(Leeward Plane)

Circular Nose Dahlem-Buck Dahlem-Buck
Body Inclined Cone ACM Emperical i

Noncircular Nose Dahlem-Buck Dahlem Buck
Body Tangent-Cone ACM Emperical

--------------- Fins/Wing Tangent-Wedge Prandl-Meyer

68

"(. (“.'

PO AL T R R P R R P S

Cme VU a et

Ca T

FT L E I

o

-~

LS
-

A

Ad C PSR TS ol P R Rt X
) ?fl.?’l)ll A AAAS

RIS,
v %} t{’ 2L Ao

“amy
T

’
.

-~
>

g

- -
S

A7
P Lol

B

-~
L AU
P ) .

AR RI AT A
AR

-
»

YL 4
P
4 4

.



- .

% A B Xy

", A

———————— M S MW B A EUM YR SN N AR ANRARA MR RNUR RS ROAR A IS YT TR USRS =Yt WP EAZNNL AT AN A F AN ANYRUN VLT

AR AN AL RAD

NSWC TR 86-253

TABLE 2. COMPARISON COMPUTATIONS FOR
BODY/FIN ICONFIGURATIONS, M,=2.0,a=5 DEG,
x'=3.0 CALIBERS FROM NOSE, AR=CYLINDER CROSS-
SECTION, Lg=CYLINDER DIAMETER

] Case Ca C Cun
FIN 1
§=0tc=00
NANC (first) 0.091 0.81 -1.09
NANC (second) 0.097 0.83 -1.09
SWINT 0.096 0.83 -1.13
FIN 1
6=0,t/c = 0.1
NANC (first) 0.21 0.78 -1.03
NANC (second) 0.21 0.77 -0.90
SWINT 0.19 0.77 -0.96
FIN1
§ =-100,t/c = 0.0
NANC (first) 0.21 -0.26 1.52
NANC (second) 0.21 -0.24 1.54
SWINT 0.19 -0.26 1.54
FIN1
8§ =-100,tc = 0.1
NANC (first) 0.30 -0.22 1.45
NANC (second) 0.30 -0.17 133
SWINT 0.29 -0.18 1.29
FIN 2
§=0,t/c =0.1
NANC (first) 023 1.01 -1.7
! NANC (second) 0.23 1.00 -1.57
L SWINT 0.21 1.00 -1.73
—
'FIN 3
: §=0te=01
NANC (first) 024 0.98 -1.65
NANC (second) 0.25 0.97 -1.53
SWINT 0.21 0.88 -1.39
FIN 3
§=0,t/c=10.0
NANC (first) 0.091 102 -1.79
NANC (second) 0.097 1.03 -1.77
SWINT 0.096 0.96 -1.65
FIN 4
§=0te=100
NANC (first) 0.091 1.04 -1.18
NANC (second) 0.097 1.18 -1.37
SWINT 0.096 1.18 -1.50
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TABLE 3. SEMI-MAJOR, SEMI-MINOR AXIS VARIATIONS
FOR VARIABLE ELLIPTICAL CROSS-SECTION BODIES

Sharp-Nose Body Blunt-Nose Body

L a/L b/l. WL /L b/L

0.0000 | 0.000¢ [ 00000 | 0.0000 { 0.0000 | 0.0000

0.0100 | 0.0071 | 0.0024 | 00216 | 0.0217 | 0.0217

0.0200 | 00118 | 00039 | 00258 | 0.0222 | 0.0219

0.0250 | 0.0140 | 00047 | 00799 [ 00337 | 0.0257
: 0.0500 | 00234 | 00078 | 01340 | 0.0452 | 0.0287
I 0.0750 | 0.0314 | 0.0105 | 0.1881 | 0.0564 | 0.0311
| 0.1000 [ 0.0388 | 0.0129 | 02423 | 0.0673 | 00332
1'0.1250 | 00455 | 0.0152 | 0.2964 | 0.0777 | 0.0349

0.1500 | 0.0518 | 0.0173 | 0.3505 | 0.0875 | 0.0365
1 0.2000 | 0.0633 | 0.0211 [ 04046 | 0.0965 | 0.0378
1 0.2500 | 0.0737 | 0.0246 | 04587 | 0.1648 | 0.0389
- 03000 | 00831 | 0.0277 | 05669 | 0.1177 | 0.0405

0.3500 | 0.0915 | 0.0305 | 0.6210 | 0.1220 | 0.0410
. €.4000 | 0.0991 | 0.0330 | 06481 | 0.1233 | 0.0412
| 0.4506 | 0.1059 [ 0.0353 | 06800 | 0.1237 | 0.0412
05000 | 01118 | 0.0373 | 07000 | 0.1229 | 004'3
| 0.5750 | 0.1188 | 0.0396 | 0.7292 | 0.1190 | 0.0418
I 0.6000 | 0.1206 | 0.0402 | 0.7500 | 0.1166 | 0.0421
[ 06250 | 0.1221 | 0.0407 | 0.7833 | 0.1093 | 0.0431
©0.6500 | 0.1231 | 0.0410 | 0.8000 | 0.1066 | 0.0435

0.6800 | 0.1237 | 0.0412 | 08314 | 0.0965 | 0.0452

0.7000 | 0.1234 | 0.0411 | 0.8500 | 0.0945 | 0.0458
107292 | 0.1221 | 0.0407 | 08716 | 0.0867 | 0.0476
1 0.7500 | 0.1213 | 0.0404 | 0.9000 | 0.0813 | 0.0492
0 0.7833 | 0.1188 | 0.0396 | 09250 | 0.0748 | 0.0514

0.8000 | 0.1180 | 00393 | 09500 [ 0.0687 | 0.0540
08314 | 01146 | 0.0382 | 09750 | 0.0635 | 00567

0.8500 | 0.1139 | 0.0380 | 1.0000 | 0.0595 | 0.0595

0.8716 | 0.1113 | 0.0371

0.9000 | 0.1096 | 0.0365

0.9250 | 0.1075 | 0.0358

0.9500 | 0.1056 | 0.0352

0.9750 | 0.1039 | 0.0346

1.0000 | 01030 | 0.0343
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RN
NOMENCLATURE ;:;‘;31
e E'.\
da Free-stream speed of sound t"i:
Ty
A u (3 q12 = (2-y)/6 Mx2u 2 - 1] + cosacosPlg? + q; \'_',::::\
NS
g= + (y-1/2 M2 u,], second-order gradient component. M
AR Reference area e
B=0,1. Body boundary condition factor
C Source vector in conservation equation (see E)
Ca Axial force coefficient
Cas Base axial force coefTicient
Car Skin friction axial force coefficient
Cy F/(AR Qp), general force coefficient
Ce Roll moment coefficient
Cn Pitching moment coefficient
Cy M/(Agr Lr Qp), general moment coefTicient
Cn Yawing moment coefficient
Cx Normal force coefficient
Cp (p/pm— 1/(y/2 M»2), pressure coefficient
Cy Side force coefficient
D Circular body diameter or equivalent circular body
diameter
DO At at the body boundary
E Conservation vector (two or three components).

Unified almost conservation form vector equation for

flow field, body surface, and fin surface is
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koG aH s aT
—+ -+ —=C+tq, —+—)
ax o€, 30 : & 0
aRP
—|R+x—11-§
dx
oR
b
- —1-
» £
General force, or fin surface boundary condition {actor
(F=0,1.0)

First- and second-order conical potential functions
See E

See E

Grid index for constant x plane

Unit vector in x direction

Grid index for constant O plane

Unit vector inr direction

Maximum j vaiue

Grid index for constant £ value

Unit vector in O direction

Minimum ar.d maximum k on a fin
Maximumk value

Body or ¢iement iength

Conversion factor from length units to fu -t
Mean aerodynamic chord for a fin
Acrodynamic symmetry mode

Reference lengh

General moment or local Mach number

Locai Mach number st the end of a body
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—_— e e e e e e— . —

Mo Free-stream Mach number

n Normal distance from a body cross-section boundary
curve (in the plane of section) or unit normal from a
solid surface

p Local pressure

P, Free-stream pressure

* Allgvalues below are nondimensional

\Y
q Perturbation velocity vector ﬁ.
q, Crossflow component of perturbation velocity vector i\."
N
a, Mat (g 2) (2-y)A2p2) ::-."
q, vy Y2+ e lqe - qp + G32) + (\'-l'}1\1.,52/[53[1,"/2(1,’13- &‘l

w2 + w_vy wnl

L I I In gn Sy
A J
(4 "sfxls,s}-, A

Qo w1 Q122 + w, (Q=-qy + q12) + (y-1) ML2/P2 [~ w /2
(112-wy2) + v, vy wl ‘."
F 5
q, First-order perturbation vector -:..-;.
[ LI
>
q, First-order crossflow perturbation vector ‘/..:;-
e
q, Second-order perturbation vector ".f “
q, Second-order crossflow perturbation vector f_-\.-::i
q, Free-stream velocity vector -:;'{“.,
LA™ -
. A
Crossflow component of free-stream velocity vector .‘ *
. (N
Q Total veloucity vector o,
e
Y
Qp P>y Mz2, dynamic pressure ,‘é{
G
r General cylindrical coordinate radius f;
[ XX
ry Body radius -.::-."1
N %
r, T, Minimum and mauximum radial distance on a finfor a ;'_-;a
e %
value of x W
M
R r/x L
e
Ry ry/x o
L
vt
e ]
Sty
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RMI Minimum fin radial distance

RMFN Reynolds number per Mach number per {oot per million
= Px am/(}-loo 106)

RNF Reynolds number per foot = RMFN (106) (M)
RNL Element Reynolds number
s r—RMlor curvearc length
SMA Maximum s for a fin
S See E
S Wetted surface area :C\";-.::\\.:-:f
oM NN Ly
o O L
oL
t Fin thickness :‘i"""\?
» q’\{
ty Finsivpe ek
!.'- o _,:?.
T See E DR
. _'.r,c.* .r,;.
- "
uy, U2 x components of q; and q9 :,:,‘.\‘-.';:t
ay LN
A et N
oy A
uge us +Mo2/p2 A Y F LS V)
Uoo cosa cosfl, » component of o ’.\",ﬁ.:{"
CACNR
AT IR N
U x component of Q ¥_,Q- N du
t"‘\"""-'
r o ‘-',: ¥
U, U9 r component of qy, q2 'b')_ ,»ﬁ
o
U2 vy ~ M2 qe PN
N
] AR “J‘
Va sinf sin0 + sinasinfj cos8, r component of q» "::-r.:-‘:‘_.r:.-l
.‘-:w'-\:;w:}
-, |
A rcomponent cf Q :.‘{:t:-l:,: A
Ugl, Us2 First- and second-order tangential velocity components
wy, wo 0 compenentsof q1, g2
wye wy — Mz2qy
W, sinf cos0 - sina cosP sint), O component of g,
w 0 component of Q
x Distance from nose
x' = XCG Moment center from the nose
| 74
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Q!
A
*.,\"_’_;
[y
.. "
XMI Minimum x for a fin ;'(f:'&'
[ )
XMA Meximum x for a fin ':'6'},‘\‘1
.- e
4R See Lg y:("i
y Cartesian distance to right looking downstream '
z Cartesian distance; up looking downstream V.ﬁ:
'.::.'.‘:-i.
a Angle of attack A
4"‘\:
p (M2 - 1)% MV
. . @
B Sideslip angle -i'f::))
N
Y Heat capacity ratio N
\\(.“
»
8¢ Fin deflection :.;\"
Ry
]
{ Clustering transformation for § variable ey
o
A
. . v
0 Angle distance fror z axis .:’_-.:\
R
. ".“"
O¢ Angle location of a fin )
@
K Curve radius of curvature 8O
q"‘N‘)‘\
. \ A
A Fin sweepback angle -,-.‘-",Q
s
w
Heo Free-stream viscosity ;%E:
. . o
& Shcaring transformation . g
e
.
. AR
[ Free-stream density N
. e
e
o, e Y
0 Angle from fin midplane to fin surface o
" ,'\.'(1
(oo Angle clustering transformation variaole, roll angle R’ o
PNANS
&
NS
i} 6 -0f-0 ~
N
v Gradient operator N
a1
V. Crossflow gradient opcrator ;'.-_L -
R
oo
sl
s
o,
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